Kubet88<\/a> t\u00ecm hi\u1ec3u kh\u00e1i ni\u1ec7m v\u1ec1 t\u1ed5ng l\u00f4 \u0111\u1ec1 l\u00e0 g\u00ec nh\u00e9!<\/p>\nKh\u00e1i ni\u1ec7m v\u1ec1 t\u1ed5ng l\u00f4 \u0111\u1ec1<\/h2>\n
\u0110\u1ec3 bi\u1ebft t\u1ed5ng l\u00f4 \u0111\u1ec1 l\u00e0 g\u00ec, h\u00e3y c\u00f9ng ch\u00fang t\u00f4i t\u00ecm hi\u1ec3u kh\u00e1i ni\u1ec7m sau nh\u00e9!<\/p>\n
T\u1ed5ng l\u00f4 \u0111\u1ec1 l\u00e0 t\u1eadp h\u1ee3p c\u00e1c con s\u1ed1 g\u1ed3m 2 ch\u1eef s\u1ed1. Khi ta c\u1ed9ng 2 ch\u1eef s\u1ed1 c\u1ee7a s\u1ed1 \u00f3 l\u1ea1i v\u1edbi nhau th\u00ec cho ra k\u1ebft qu\u1ea3 gi\u1ed1ng nh\u01b0 nhau. \u0110\u1ec3 cho b\u1ea1n d\u1ec5 h\u00ecnh dung v\u00e0 d\u1ec5 hi\u1ec3u h\u01a1n v\u1ec1 t\u1ed5ng l\u00f4 \u0111\u1ec1 l\u00e0 g\u00ec, ch\u00fang t\u00f4i s\u1ebd \u0111\u01b0a ra m\u1ed9t v\u00e0i v\u00ed d\u1ee5 \u0111\u01a1n gi\u1ea3n.<\/p>\n
V\u00ed d\u1ee5: Ta c\u00f3 s\u1ed1 31 v\u00e0 s\u1ed1 22 \u0111\u1ec1u c\u00f9ng n\u1eb1m trong t\u1ed5ng 4 b\u1edfi v\u00ec:\u00a03+1 = 4 v\u00e0 2+ 2=4<\/p>\n